Probabilistic Gaze Estimation Without Active Personal Calibration

12 years 1 months ago
Probabilistic Gaze Estimation Without Active Personal Calibration
Existing eye gaze tracking systems typically require an explicit personal calibration process in order to estimate certain person-specific eye parameters. For natural human computer interaction, such a personal calibration is often cumbersome and unnatural. In this paper, we propose a new probabilistic eye gaze tracking system without explicit personal calibration. Unlike the traditional eye gaze tracking methods, which estimate the eye parameter deterministically, our approach estimates the probability distributions of the eye parameter and the eye gaze, by combining image saliency with the 3D eye model. By using an incremental learning framework, the subject doesn’t need personal calibration before using the system. His/her eye parameter and gaze estimation can be improved gradually when he/she is naturally viewing a sequence of images on the screen. The experimental result shows that the proposed system can achieve less than three degrees accuracy for different people without ca...
Jixu Chen, Qiang Ji
Added 20 Aug 2011
Updated 20 Aug 2011
Type Journal
Year 2011
Where CVPR
Authors Jixu Chen, Qiang Ji
Comments (0)